245 research outputs found

    Infrared Emission from Supernova Remnants: Formation and Destruction of Dust

    Full text link
    We review the observations of dust emission in supernova rem- nants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observa- tional limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept-up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.Comment: Published in the Springer Handbook of Supernova

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure

    SOFIA mid-infrared observations of Supernova 1987A in 2016 - Forward shocks and possible dust re-formation in the post-shocked region

    Get PDF
    The equatorial ring of Supernova (SN) 1987A has been exposed to forward shocks from the SN blast wave, and it has been suggested that these forward shocks have been causing ongoing destruction of dust in the ring.We obtained Stratospheric Observatory For Infrared Astronomy The Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) 11.1, 19.7, and 31.5 μmphotometry of SN 1987A in 2016. Compared with Spitzer measurements 10 yr earlier, the 31.5 μm flux has significantly increased. The excess at 31.5 μm appears to be related to the Herschel 70 μm excess, which was detected 5 yr earlier. The dust mass needed to account for the 31.5-70 μm excess is 3-7 × 10-4M⊙, more than 10 times larger than the ring dust mass (~1 × 10-5M⊙) estimate from the data 10 yr earlier. We argue that dust grains are re-formed or grown in the post-shock regions in the ring after forward shocks have destroyed pre-existing dust grains in the ring and released refractory elements into gas. In the post-shock region, atoms can stick to surviving dust grains, and the dust mass may have increased (grain growth), or dust grains might have condensed directly from the gas. An alternative possibility is that the outer part of the expanding ejecta dust might have been heated by X-ray emission from the circumstellar ring. The future development of this excess could reveal whether grains are reformed in the post-shocked region of the ring or eject dust is heated by X-ray

    Quantification and analysis of icebergs in a tidewater glacier fjord using an object-based approach

    Get PDF
    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    No cold dust within the supernova remnant Cassiopeia A

    Full text link
    A large amount (about three solar masses) of cold (18 K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported. It was concluded that dust production in type II supernovae can explain how the large quantities (10^8 solar masses) of dust observed in the most distant quasars could have been produced within only 700 million years after the Big Bang. Foreground clouds of interstellar material, however, complicate the interpretation of the earlier submillimetre observations of Cas A. Here we report far-infrared and molecular line observations that demonstrate that most of the detected submillimetre emission originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and Cas A, and is therefore not associated with the remnant. The argument that type II supernovae produce copious amounts of dust is not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.Comment: 13 pages, 3 figure

    Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling

    Get PDF
    Muscle fiber conduction velocity (MFCV) has often been shown to decrease during standardized fatiguing isometric contractions. However, several studies have indicated that the MFCV may remain constant during fatiguing dynamic exercise. It was investigated if these observations can be related to the absence of a large decrease in pH and if MFCV can be considered as a good indicator of acidosis, also during dynamic bicycle exercise. High-density surface electromyography (HDsEMG) was combined with read-outs of muscle energetics recorded by in vivo 31P magnetic resonance spectroscopy (MRS). Measurements were performed during serial exhausting bouts of bicycle exercise at three different workloads. The HDsEMG recordings revealed a small and incoherent variation of MFCV during all high-intensity exercise bouts. 31P MRS spectra revealed a moderate decrease in pH at the end of exercise (~0.3 units down to 6.8) and a rapid ancillary drop to pH 6.5 during recovery 30 s post-exercise. This additional degree of acidification caused a significant decrease in MFCV during cycling immediately after the rest period. From the data a significant correlation between MFCV and [H+] ([H+] = 10−pH) was calculated (p < 0.001, Pearson’s R = −0.87). Our results confirmed the previous observations of MFCV remaining constant during fatiguing dynamic exercise. A constant MFCV is in line with a low degree of acidification, considering the presence of a correlation between pH and MFCV after further increasing acidification

    Allometric Scaling of the Active Hematopoietic Stem Cell Pool across Mammals

    Get PDF
    BACKGROUND: Many biological processes are characterized by allometric relations of the type Y = Y (0) M(b) between an observable Y and body mass M, which pervade at multiple levels of organization. In what regards the hematopoietic stem cell pool, there is experimental evidence that the size of the hematopoietic stem cell pool is conserved in mammals. However, demands for blood cell formation vary across mammals and thus the size of the active stem cell compartment could vary across species. METHODOLOGY/PRINCIPLE FINDINGS: Here we investigate the allometric scaling of the hematopoietic system in a large group of mammalian species using reticulocyte counts as a marker of the active stem cell pool. Our model predicts that the total number of active stem cells, in an adult mammal, scales with body mass with the exponent ¾. CONCLUSION/SIGNIFICANCE: The scaling predicted here provides an intuitive justification of the Hayflick hypothesis and supports the current view of a small active stem cell pool supported by a large, quiescent reserve. The present scaling shows excellent agreement with the available (indirect) data for smaller mammals. The small size of the active stem cell pool enhances the role of stochastic effects in the overall dynamics of the hematopoietic system

    Distribution of motor unit potential velocities in short static and prolonged dynamic contractions at low forces: use of the within-subject’s skewness and standard deviation variables

    Get PDF
    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as position tasks, applying forces up to 20% of maximal voluntary contraction (MVC). Four variables, derived from the inter-peak latency technique, were used to describe changes in the surface electromyography signal: the mean muscle fibre conduction velocity (CV), the proportion between slow and fast MUPs expressed as the within-subject skewness of MUP velocities, the within-subject standard deviation of MUP velocities [SD-peak velocity (PV)], and the amount of MUPs per second (peak frequency = PF). In short static tests and the initial phase of prolonged tests, larger forces induced an increase of the CV and PF, accompanied with the shift of MUP velocities towards higher values, whereas the SD-PV did not change. During the first 1.5–2 min of the prolonged lower force levels tests (unloaded, and loaded 5 and 10% MVC) the CV and SD-PV slightly decreased and the MUP velocities shifted towards lower values; then the three variables stabilized. The PF values did not change in these tests. However, during the prolonged higher force (20% MVC) test, the CV decreased and MUP velocities shifted towards lower values without stabilization, while the SD-PV broadened and the PF decreased progressively. It is argued that these combined results reflect changes in both neural regulatory strategies and muscle membrane state
    corecore